Telegram Group & Telegram Channel
Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/221
Create:
Last Update:

Direct Preference Optimization: Your Language Model is Secretly a Reward Model [2023] - продолжаем LLM-ликбез

В прошлый раз мы разбирали стандартный RLHF, теперь давайте глянем на самого популярного из конкурентов и наследников, DPO. Авторы статьи говорят про RLHF следующее:

1) Reward model у нас не особо круто работает, особенно вне data distribution, поэтому полноценный её максимизатор будет плохим.
2) Существует ещё и проблема разнообразия, которого при идеальной максимизации не будет.
3) Наши RL методы сами по себе неидеальны и дороги в вычислении и реализации/отладке.

Вместо этого они хотят сформулировать задачу для обучения более простым образом. Давайте посмотрим, что из этого вышло.

Я не погружался в доказательства вывода, изложу своё понимание результата. Авторы замечают, что двухшаговая процедура из обучения Reward Model и затем RL можно переформулировать как одношаговую процедуру обучения на задачу с одной функцией ошибки и без дополнительной Reward Model.

Почему это возможно? Во-первых, в отличие от обычного RL, никаких настоящих наград не существует, а также нет никакого онлайн-взаимодействия со средой. У нас есть только зафиксированный датасет из троек [запрос ; хороший ответ ; плохой ответ].

На таких данных задачу можно формулировать по-разному, но в сущности они будут оптимизировать одно и то же - приближать модель к генерации хороших ответов, отдалять от генерации плохих ответов, при этом накладывая регуляризацию, чтобы модель далеко не убегала от инициализации. Одну из реализаций такой функции ошибки и предложили авторы статьи.

Практического опыта у меня нет, но в статье DPO вроде бы обходит RLHF на задачах. Чуваки в статье про Llama3 пишут, что используют DPO, так что, наверное, метод действительно лучше с учётом простоты реализации.

Замечу, что метод не решает обозначенные мною проблемы в посте про RLHF. Они вытекают из самих данных с человеческой разметкой, которые, во-первых, зафиксированы, а значит, не происходит GAN-подобного обучения, в котором данные пытаются "атаковать" модель в её слабые места и тем самым позволяя ей улучшаться, а, во-вторых, недостаточно велики и разнообразны, чтобы для решения поставленной задачи нужно было обучаться логическому размышлению и построению качественной картины мира.

Наверняка для RLHF/DPO придумали множество модификаций (в том числе всякие конструкции поверх LLM типа CoT), которые дают более крутой результат, но с таким соотношением пространства параметров и объёма данных решить задачу по-нормальному пока что вряд ли получится.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/221

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Knowledge Accumulator from ye


Telegram Knowledge Accumulator
FROM USA